@article {2017|2037, title = {Multifunctional energy landscape for a DNA G-quadruplex: An evolved molecular switch.}, journal = {J Chem Phys}, volume = {147}, year = {2017}, month = {2017 Oct 21}, pages = {152715}, abstract = {

We explore the energy landscape for a four-fold telomere repeat, obtaining interconversion pathways between six experimentally characterised G-quadruplex topologies. The results reveal a multi-funnel system, with a variety of intermediate configurations and misfolded states. This organisation is identified with the intrinsically multi-functional nature of the system, suggesting a new paradigm for the classification of such biomolecules and clarifying issues regarding apparently conflicting experimental results.

}, issn = {1089-7690}, doi = {10.1063/1.4997377}, author = {Cragnolini, Tristan and Chakraborty, Debayan and Sponer, Jiri and Philippe Derreumaux and Pasquali, Samuela and Wales, David J} } @article {2016|1707, title = {Coarse-Grained Simulations Complemented by Atomistic Molecular Dynamics Provide New Insights into Folding and Unfolding of Human Telomeric G-Quadruplexes}, journal = {J. Chem. Theory Comput.}, volume = {12}, number = {12}, year = {2016}, month = {dec}, pages = {6077{\textendash}6097}, abstract = {G-quadruplexes are the most important non canonical DNA architectures. Many quadruplex-forming sequences, including the human telomeric sequence d(GGGTTA)(n), have been investigated due to their implications in cancer and other diseases, and because of their potential in DNA-based nanotechnology. Despite the availability of atomistic structural studies of folded G-quadruplexes, their folding pathways remain mysterious, and mutually contradictory models of folding coexist in the literature. Recent experiments convincingly demonstrated that G-quadruplex folding often takes days to reach thermodynamic equilibrium. Based on atomistic simulations of diverse classes of intermediates in G-quadruplex folding, we have suggested that the folding is an extremely multipathway process combining a kinetic partitioning mechanism with conformational diffusion. However, complete G-quadruplex folding is far beyond the time scale of atomistic simulations. Here we use high-resolution coarse-grained simulations to investigate potential unfolding intermediates, whose structural dynamics are then further explored with all-atom simulations. This multiscale approach indicates how various pathways are interconnected in a complex network. Spontaneous conversions between different folds are observed. We demonstrate the inability of simple order parameters, such as radius of gyration or the number of native H-bonds, to describe the folding landscape of the G-quadruplexes. Our study also provides information relevant to further development of the coarse grained force field.}, issn = {1549-9618}, doi = {10.1021/acs.jctc.6b00667}, author = {Stadlbauer, Petr and Mazzanti, Liuba and Cragnolini, Tristan and Wales, David J. and Philippe Derreumaux and Pasquali, Samuela and Sponer, Jiri} } @article {2015|1716, title = {Ab initio RNA folding}, journal = {Journal of Physics-condensed Matter}, volume = {27}, number = {23}, year = {2015}, month = {jun}, pages = {233102}, doi = {10.1088/0953-8984/27/23/233102}, author = {Cragnolini, Tristan and Philippe Derreumaux and Pasquali, Samuela} } @article {2015|1708, title = {Coarse-Grained HiRE-RNA Model for ab Initio RNA Folding beyond Simple Molecules, Including Noncanonical and Multiple Base Pairings}, journal = {J. Chem. Theory Comput.}, volume = {11}, number = {7}, year = {2015}, pages = {3510{\textendash}3522}, doi = {10.1021/acs.jctc.5b00200}, author = {Cragnolini, Tristan and Laurin, Yoann and Philippe Derreumaux and Pasquali, Samuela} } @article {2015|1780, title = {{E}pock: rapid analysis of protein pocket dynamics}, journal = {Bioinformatics}, volume = {31}, number = {9}, year = {2015}, month = {may}, pages = {1478{\textendash}1480}, doi = {10.1093/bioinformatics/btu822}, author = {Laurent, Benoist and Matthieu Chavent and Cragnolini, Tristan and Dahl, Anna Caroline E. and Pasquali, Samuela and Philippe Derreumaux and Sansom, Mark S. P. and Marc Baaden} } @conference {2014|1784, title = {Coarse-Grain RNA Folding: Towards More Complex Structures}, booktitle = {Biophys. J.}, volume = {106}, number = {2, 1}, year = {2014}, note = {58th Annual Meeting of the Biophysical-Society, San Francisco, CA, FEB 15-19, 2014}, month = {jan}, pages = {283A}, author = {Cragnolini, Tristan and Laurin, Yoann and Philippe Derreumaux and Pasquali, Samuela} } @conference {2014|1783, title = {Wide Exploration of OPEP Protein Energy Landscapes using Advanced Monte Carlo Methods}, booktitle = {Biophys. J.}, volume = {106}, number = {2, 1}, year = {2014}, note = {58th Annual Meeting of the Biophysical-Society, San Francisco, CA, FEB 15-19, 2014}, month = {jan}, pages = {256A}, author = {Cragnolini, Tristan and Sutherland-Cash, Kyle H. and Wales, David and Pasquali, Samuela and Philippe Derreumaux} } @article {2013|1923, title = {Coarse-Grained Simulations of RNA and DNA Duplexes}, journal = {J. Phys. Chem. B}, volume = {117}, number = {27}, year = {2013}, month = {jul}, pages = {8047{\textendash}8060}, doi = {10.1021/jp400786b}, author = {Cragnolini, Tristan and Philippe Derreumaux and Pasquali, Samuela} }