@article {2015|1731, title = {Integrating multi-scale data on homologous recombination into a new recognition mechanism based on simulations of the RecA-ssDNA/dsDNA structure}, journal = {Nucleic Acids Res.}, volume = {43}, year = {2015}, month = {dec}, pages = {10251{\textendash}63}, abstract = {

RecA protein is the prototypical recombinase. Members of the recombinase family can accurately repair double strand breaks in DNA. They also provide crucial links between pairs of sister chromatids in eukaryotic meiosis. A very broad outline of how these proteins align homologous sequences and promote DNA strand exchange has long been known, as are the crystal structures of the RecA-DNA pre- and postsynaptic complexes; however, little is known about the homology searching conformations and the details of how DNA in bacterial genomes is rapidly searched until homologous alignment is achieved. By integrating a physical model of recognition to new modeling work based on docking exploration and molecular dynamics simulation, we present a detailed structure/function model of homology recognition that reconciles extremely quick searching with the efficient and stringent formation of stable strand exchange products and which is consistent with a vast body of previously unexplained experimental results.

}, doi = {10.1093/nar/gkv883}, author = {Yang, Darren and Boyer, Benjamin and Chantal Pr{\'e}vost and Danilowicz, Claudia and Prentiss, Mara} } @article {2015|1732, title = {The poor homology stringency in the heteroduplex allows strand exchange to incorporate desirable mismatches without sacrificing recognition in vivo}, journal = {Nucleic Acids Res.}, volume = {43}, year = {2015}, month = {jul}, pages = {6473{\textendash}85}, abstract = {

RecA family proteins are responsible for homology search and strand exchange. In bacteria, homology search begins after RecA binds an initiating single-stranded DNA (ssDNA) in the primary DNA-binding site, forming the presynaptic filament. Once the filament is formed, it interrogates double-stranded DNA (dsDNA). During the interrogation, bases in the dsDNA attempt to form Watson-Crick bonds with the corresponding bases in the initiating strand. Mismatch dependent instability in the base pairing in the heteroduplex strand exchange product could provide stringent recognition; however, we present experimental and theoretical results suggesting that the heteroduplex stability is insensitive to mismatches. We also present data suggesting that an initial homology test of 8 contiguous bases rejects most interactions containing more than 1/8 mismatches without forming a detectable 20 bp product. We propose that, in vivo, the sparsity of accidental sequence matches allows an initial 8 bp test to rapidly reject almost all non-homologous sequences. We speculate that once the initial test is passed, the mismatch insensitive binding in the heteroduplex allows short mismatched regions to be incorporated in otherwise homologous strand exchange products even though sequences with less homology are eventually rejected.

}, doi = {10.1093/nar/gkv610}, author = {Danilowicz, Claudia and Yang, Darren and Kelley, Craig and Chantal Pr{\'e}vost and Prentiss, Mara} }