@article {2018|2087, title = {The major β-catenin/E-cadherin junctional binding site is a primary molecular mechano-transductor of differentiation .}, journal = {Elife}, volume = {7}, year = {2018}, month = {2018 07 19}, abstract = {

, the primary molecular mechanotransductive events mechanically initiating cell differentiation remain unknown. Here we find the molecular stretching of the highly conserved Y654-β-catenin-D665-E-cadherin binding site as mechanically induced by tissue strain. It triggers the increase of accessibility of the Y654 site, target of the Src42A kinase phosphorylation leading to irreversible unbinding. Molecular dynamics simulations of the β-catenin/E-cadherin complex under a force mimicking a 6 pN physiological mechanical strain predict a local 45\% stretching between the two α-helices linked by the site and a 15\% increase in accessibility of the phosphorylation site. Both are quantitatively observed using FRET lifetime imaging and non-phospho Y654 specific antibody labelling, in response to the mechanical strains developed by endogenous and magnetically mimicked early mesoderm invagination of gastrulating embryos. This is followed by the predicted release of 16\% of β-catenin from junctions, observed in FRAP, which initiates the mechanical activation of the β-catenin pathway process.

}, keywords = {Amino Acid Sequence, Animals, Armadillo Domain Proteins, Binding Sites, Cadherins, Cell Differentiation, Drosophila melanogaster, Drosophila Proteins, Fluorescence Resonance Energy Transfer, Mechanotransduction, Cellular, Molecular Dynamics Simulation, Phosphorylation, Protein Binding, Protein Conformation, Proto-Oncogene Proteins pp60(c-src), Sequence Homology, Transcription Factors}, issn = {2050-084X}, doi = {10.7554/eLife.33381}, author = {R{\"o}per, Jens-Christian and Mitrossilis, D{\'e}mosth{\`e}ne and Guillaume Stirnemann and Waharte, Fran{\c c}ois and Brito, Isabel and Fernandez-Sanchez, Maria-Elena and Marc Baaden and Salamero, Jean and Farge, Emmanuel} } @article {2015|1755, title = {How osmolytes influence hydrophobic polymer conformations: A unified view from experiment and theory.}, journal = {Proc. Natl. Acad. Sci. Usa}, volume = {112}, year = {2015}, pages = {9270{\textendash}5}, abstract = {

It is currently the consensus belief that protective osmolytes such as trimethylamine N-oxide (TMAO) favor protein folding by being excluded from the vicinity of a protein, whereas denaturing osmolytes such as urea lead to protein unfolding by strongly binding to the surface. Despite there being consensus on how TMAO and urea affect proteins as a whole, very little is known as to their effects on the individual mechanisms responsible for protein structure formation, especially hydrophobic association. In the present study, we use single-molecule atomic force microscopy and molecular dynamics simulations to investigate the effects of TMAO and urea on the unfolding of the hydrophobic homopolymer polystyrene. Incorporated with interfacial energy measurements, our results show that TMAO and urea act on polystyrene as a protectant and a denaturant, respectively, while complying with Tanford-Wyman preferential binding theory. We provide a molecular explanation suggesting that TMAO molecules have a greater thermodynamic binding affinity with the collapsed conformation of polystyrene than with the extended conformation, while the reverse is true for urea molecules. Results presented here from both experiment and simulation are in line with earlier predictions on a model Lennard-Jones polymer while also demonstrating the distinction in the mechanism of osmolyte action between protein and hydrophobic polymer. This marks, to our knowledge, the first experimental observation of TMAO-induced hydrophobic collapse in a ternary aqueous system.

}, keywords = {Atomic Force, Computer Simulation, Hydrophobic and Hydrophilic Interactions, Mechanical, Methylamines, Methylamines: chemistry, Microscopy, Molecular Dynamics Simulation, Normal Distribution, Polymers, Polymers: chemistry, Polystyrenes, Polystyrenes: chemistry, Protein Binding, Protein Conformation, Protein Folding, Proteins, Proteins: chemistry, Software, Solvents, Solvents: chemistry, Stress, Thermodynamics, Urea, Urea: chemistry, Water, Water: chemistry}, isbn = {1215421109}, issn = {1091-6490}, doi = {10.1073/pnas.1511780112}, url = {http://www.pnas.org/content/112/30/9270}, author = {Mondal, Jagannath and Halverson, Duncan and Li, Isaac T S and Guillaume Stirnemann and Walker, Gilbert C and Berne, Bruce J} }