@article {2018|2129, title = {Probing the quality control mechanism of the twin-arginine translocase with folding variants of a -designed heme protein.}, journal = {J Biol Chem}, volume = {293}, year = {2018}, month = {2018 05 04}, pages = {6672-6681}, abstract = {

Protein transport across the cytoplasmic membrane of bacterial cells is mediated by either the general secretion (Sec) system or the twin-arginine translocase (Tat). The Tat machinery exports folded and cofactor-containing proteins from the cytoplasm to the periplasm by using the transmembrane proton motive force as a source of energy. The Tat apparatus apparently senses the folded state of its protein substrates, a quality-control mechanism that prevents premature export of nascent unfolded or misfolded polypeptides, but its mechanistic basis has not yet been determined. Here, we investigated the innate ability of the model Tat system to recognize and translocate -designed protein substrates with experimentally determined differences in the extent of folding. Water-soluble, four-helix bundle maquette proteins were engineered to bind two, one, or no heme cofactors, resulting in a concomitant reduction in the extent of their folding, assessed with temperature-dependent CD spectroscopy and one-dimensional H NMR spectroscopy. Fusion of the archetypal N-terminal Tat signal peptide of the trimethylamine--oxide (TMAO) reductase (TorA) to the N terminus of the protein maquettes was sufficient for the Tat system to recognize them as substrates. The clear correlation between the level of Tat-dependent export and the degree of heme -induced folding of the maquette protein suggested that the membrane-bound Tat machinery can sense the extent of folding and conformational flexibility of its substrates. We propose that these artificial proteins are ideal substrates for future investigations of the Tat system\&$\#$39;s quality-control mechanism.

}, keywords = {Amino Acid Sequence, Bacterial Proteins, Circular Dichroism, Escherichia coli, Escherichia coli Proteins, Heme-Binding Proteins, Hemeproteins, Membrane Transport Proteins, Methylamines, Models, Molecular, Oxidoreductases, N-Demethylating, Periplasm, Protein Folding, Protein Sorting Signals, Protein Stability, Protein Transport, Proton Magnetic Resonance Spectroscopy, Substrate Specificity, Temperature}, issn = {1083-351X}, doi = {10.1074/jbc.RA117.000880}, author = {Sutherland, George A and Grayson, Katie J and Adams, Nathan B P and Mermans, Daphne M J and Jones, Alexander S and Robertson, Angus J and Auman, Dirk B and Brindley, Amanda A and Sterpone, Fabio and Tuffery, Pierre and Philippe Derreumaux and Dutton, P Leslie and Robinson, Colin and Hitchcock, Andrew and Hunter, C Neil} } @article {2014|1598, title = {A predicted binding site for cholesterol on the GABAA receptor.}, journal = {Biophys. J.}, volume = {106}, number = {9}, year = {2014}, month = {may}, pages = {1938{\textendash}1949}, publisher = {Department of Physics, Rutgers University-Camden, Camden, New Jersey; Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, New Jersey. Electronic address: Grace.Brannigan@rutgers.edu.}, abstract = {Modulation of the GABA type A receptor (GABAAR) function by cholesterol and other steroids is documented at the functional level, yet its structural basis is largely unknown. Current data on structurally related modulators suggest that cholesterol binds to subunit interfaces between transmembrane domains of the GABAAR. We construct homology models of a human GABAAR based on the structure of the glutamate-gated chloride channel GluCl of Caenorhabditis elegans. The models show the possibility of previously unreported disulfide bridges linking the M1 and M3 transmembrane helices in the α and γ subunits. We discuss the biological relevance of such disulfide bridges. Using our models, we investigate cholesterol binding to intersubunit cavities of the GABAAR transmembrane domain. We find that very similar binding modes are predicted independently by three approaches: analogy with ivermectin in the GluCl crystal structure, automated docking by AutoDock, and spontaneous rebinding events in unbiased molecular dynamics simulations. Taken together, the models and atomistic simulations suggest a somewhat flexible binding mode, with several possible orientations. Finally, we explore the possibility that cholesterol promotes pore opening through a wedge mechanism.}, keywords = {Amino Acid, Binding Sites, Caenorhabditis elegans Proteins, chemistry, chemistry/metabolism, Chloride Channels, Cholesterol, GABA-A, Humans, Hydrogen Bonding, Ivermectin, metabolism, Molecular Docking Simulation, Molecular Dynamics Simulation, Porosity, Protein Binding, Protein Conformation, Receptors, Sequence Homology, Substrate Specificity}, doi = {10.1016/j.bpj.2014.03.024}, author = {J{\'e}r{\^o}me H{\'e}nin and Salari, Reza and Murlidaran, Sruthi and Grace Brannigan} }