Publications

Export 109 results:
Author Title [ Type(Desc)] Year
Filters: First Letter Of Last Name is K  [Clear All Filters]
Journal Article
Danilowicz C, Yang D, Kelley C, Prévost C, Prentiss M.  2015.  The poor homology stringency in the heteroduplex allows strand exchange to incorporate desirable mismatches without sacrificing recognition in vivo. Nucleic Acids Res.. 43:6473–85.
Gorbunov RD, Nguyen PHoang, Kobus M, Stock G.  2007.  Quantum-classical description of the amide I vibrational spectrum of trialanine. J. Chem. Phys.. 126
Kim R, Kanamaru S, Mikawa T, Prévost C, Ishii K, Ito K, Uchiyama S, Oda M, Iwasaki H, Kim SK et al..  2018.  RecA requires two molecules of Mg2+ ions for its optimal strand exchange activity in vitro. Nucleic Acids Res. ahead of print
Kim R, Kanamaru S, Mikawa T, Prévost C, Ishii K, Ito K, Uchiyama S, Oda M, Iwasaki H, Kim SK et al..  2018.  RecA requires two molecules of Mg2+ ions for its optimal strand exchange activity in vitro. Nucleic Acids Res. ahead of print
Kim R, Kanamaru S, Mikawa T, Prévost C, Ishii K, Ito K, Uchiyama S, Oda M, Iwasaki H, Kim SK et al..  2018.  RecA requires two molecules of Mg2+ ions for its optimal strand exchange activity in vitro. Nucleic Acids Res. ahead of print
Rahaman O, Kalimeri M, Melchionna S, Hénin J, Sterpone F.  2015.  Role of Internal Water on Protein Thermal Stability: The Case of Homologous G Domains.. J. Phys. Chem. B. 119:8939–49.
Licsandru E., Kocsis I., Shen Y.X, Murail S., Legrand Y.M, van der Lee A., Tsai D., Baaden M, Kumar M., Barboiu M..  2016.  Salt-Excluding Artificial Water Channels Exhibiting Enhanced Dipolar Water and Proton Translocation. J. Am. Chem. Soc.. 138:5403–5409.
Licsandru E., Kocsis I., Shen Y.X, Murail S., Legrand Y.M, van der Lee A., Tsai D., Baaden M, Kumar M., Barboiu M..  2016.  Salt-Excluding Artificial Water Channels Exhibiting Enhanced Dipolar Water and Proton Translocation. J. Am. Chem. Soc.. 138:5403–5409.
Sauguet L., Poitevin F., Murail S., Van Renterghem C., Moraga-Cid G., Malherbe L., Thompson A.W, Koehl P., Corringer P.J, Baaden M et al..  2013.  Structural basis for ion permeation mechanism in pentameric ligand-gated ion channels. Embo J.. 32:728–741.
Phillips J, Hardy D, Maia J, Stone J, Ribeiro J, Bernardi R, Buch R, Fiorin G, Hénin J, Jiang W et al..  2020.  Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of Chemical Physics. 153
Mazur AK, Kuchinski A.V.  1992.  Schematic methods for probabilistic enzyme kinetics. J. Theor. Biol.. 155:387–407.
Kozin S.A, Bertho G., Mazur AK, Rabesona H., Girault J.P, Haertle T., Takahashi M., Debey P., Hoa G.H.  2001.  Sheep prion protein synthetic peptide spanning helix 1 and beta-strand 2 (residues 142-166) shows beta-hairpin structure in solution. J. Biol. Chem.. 276:46364–46370.
Kobus M, Lieder M, Nguyen PHoang, Stock G.  2011.  Simulation of transient infrared spectra of a photoswitchable peptide. J. Chem. Phys.. 135
Hubert P, Sawma P, Duneau J-P, Khao J, Hénin J, Bagnard D, Sturgis J.  2010.  Single-spanning transmembrane domains in cell growth and cell-cell interactions: More than meets the eye? Cell Adh. Migr.. 4:313–324.
Kamashev DE, Mazur AK.  2004.  Single-stranded breaks relax intrinsic curvature in DNA? Biochemistry. 43:8160–8168.
Katava M, Kalimeri M, Stirnemann G, Sterpone F.  2016.  Stability and Function at High Temperature. What Makes a Thermophilic GTPase Different from Its Mesophilic Homologue. J. Phys. Chem. B. 120:2721–2730.
Katava M, Kalimeri M, Stirnemann G, Sterpone F.  2016.  Stability and Function at High Temperature. What Makes a Thermophilic GTPase Different from Its Mesophilic Homologue. J. Phys. Chem. B. 120:2721–2730.
Gnutt D, Timr S, Ahlers J, König B, Manderfeld E, Heyden M, Sterpone F, Ebbinghaus S.  2019.  Stability Effect of Quinary Interactions Reversed by Single Point Mutations. Journal of the American Chemical Society. 141:4660-4669.
Zirah S, Kozin SA, Mazur AK, Blond A, Cheminant M, Segalas-Milazzo I, Debey P, Rebuffat S.  2006.  Structural changes of region 1-16 of the Alzheimer disease amyloid beta-peptide upon zinc binding and in vitro aging. J. Biol. Chem.. 281:2151–2161.
Solovjeva T.F, Naberezhnykh G.A, Mazur AK, Khomenko V.A, Ovodov Y.S.  1986.  A study of interaction of an O-specific polysaccharide from Pseudomonas fluorescense with antibodies. Bioorg. Chem.. 12:265–272.
Katava M., Marchi M., Madern D., Sztucki M., Maccarini M., Sterpone F..  2020.  Temperature Unmasks Allosteric Propensity in a Thermophilic Malate Dehydrogenase via Dewetting and Collapse. The Journal of Physical Chemistry B. 124:1001-1008.
Katava M., Maccarini M., Villain G., Paciaroni A., Sztucki M., Ivanova O., Madern D., Sterpone F.  2016.  Thermal activation of ‘allosteric-like’ large-scale motions in a eukaryotic Lactate Dehydrogenase.. Sci. Reports. 7:41092.
Hénin J, Shinoda W, Klein ML.  2008.  United-Atom Acyl Chains for CHARMM Phospholipids. J. Phys. Chem. B.. 112:7008–7015.
Fiorin G, Klein ML, Hénin J.  2013.  Using collective variables to drive molecular dynamics simulations. Mol. Phys.. 111:3345–3362.
Krone M., Kozlikova B., Lindow N., Baaden M, Baum D., Parulek J., Hege H.-C., Viola I..  2016.  Visual Analysis of Biomolecular Cavities: State of the Art. Comput. Graphics Forum. 35:527–551.

Pages