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Exploring Conformations



MOVING OVER THE ENERGY SURFACE
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~—— ENERGY MINIMIZATION
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Find a minimum energy configuration
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Schémas de Minimisation

Les différentes méthodes ont des avantages et des désavantages. Pour
optimiser son utilisation il vaut mieux de combiner différents schémas de
minimisation.

Il y naturellement différents schémas alternatifs. Mais, de fagon générale,
une bonne approche commencera par quelques pas de Steepest-Descent,
continuera avec la méthode des Gradients-Conjugués et, dans les cas ou une
plus grande qualité des résultats est recherchée, il est désirable de finir
avec une méthode comme I'ABNR.

Convergence: Une question importante est de savoir quand on met fina la
minimisation, i. e., quel est le critére de convergence. La méthode la plus
commune est celle du Gradient de la Racine de Minimes Carrés (Gradient
Root-Mean-Square - GRMS), qui est définie comme la racine des minimes
carrés de 3N gradients. Une bonne convergence est dans |'ordre de <0.001.
En certains cas une meilleure convergence pourra tre exigée.



Applications de la Minimisation

Applications de la minimisation d'énergie en systémes macromoléculaires
pourront étre:

* Enlever les tensions dans des structures obtenues
expérimentalement

* Refinement de modeles moléculaires

* Utilisation comme composante dans des méthodes de recherche du
minime global d'un systéeme.

* Analyse d'un systéme, par example dans des cartes adiabatiques

(ex: Plot de Ramachandran).



6rid Search

* An obvious solution to the multiple minimum problem is
to generate a large number of starting conformations
and map out the shape of the Potential Energy
Surface (PES)

* Simplest and oldest approach is a grid search
* TIdentify the rotable bonds of interest
* Select the starting angles and increments

* Loop through all the combinations holding the selected angles
fixed and relaxing everything else

* Done when all combinations are tried



Variation in the energy of pentane with the two torsion angles indicated
and represented as a contour diagram and isometric plot. (Continued overleaf.)
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6rid Search: (High) Number of
Conformers to Consider

N 360
#conf = H e
i=1 0i
Wo‘m : ‘Cl’\
Main problem is a combinatorial explosion e f‘” of

For 5 bonds, 30 degree increment: 248,832 structures o oios
Second problem: don't get minima, get fixed points on surface
Basically laid a grid on the Potential Energy Surface (PES)

Method is slow, inefficient and limited Fgw \MXQ woilelc
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Molecular Dynamics Simulation

Molecule: (classical) N-particle system

Integrate numerically via the ,leapfrog”“ scheme

At At F(t) with
it o) = et

r(t+ At) = rt)+o(t+ A;)At

(equivalent to the Verlet algorithm)




MOLECULAR DYNAMICS STEPS
A bs T h/“M &@r
Verlet :
r(t+ 1) =r(t) + T dry(t)/dt + 12 dr(t)/de? + /6 dri(t)/dt’ (4)
r(t- 1) =r(t) - T dryt)/dt +1%2 d’r(t)/de>- 7°/6 dri(t)/dt’ (1)
r(t+1) = 2rj(t) - rjt-1) +1* dr(t)/de + O (4') "'(2)
(4)-(2)

vi(t) = [ri(t+ 7) - rj(t - )] / 28t

Leap-frog :
vi=[rt+1) -]/ T vt +1/2)
a,=[ vt +1/2) - vi(t-1/2)]/ T = a(t)

rj(t + 8t) = rj(t) - vi(t + %5t) 8t

r;(t) r(t+ 1) =r(t) + T vt +/2)

RECNPLEN

vi(t - 1/2) vi(t+1/2) = vi(t-1/2)+ T F(t)/m

Velocity Verlet :

ri(t+ 1) =) + T vi(t) + T2 a(t)

Vit + 1) = vi(t) + T2 [ a(t) + a(t + 1)]
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INITIAL CONDITIONS

Positions - Crystallographic coordinates
- Model conformations

\folodk@

The initial distribution of velocities are usually determined from a random distribution
with the magnitudes conforming to the required temperature and corrected so there is
no overall momentum, i.e.,

N

P=Ymy, =0
. .

The velocities, vi, are often chosen randomly from a Maxwell-Boltzmann or Gaussian

distribution at a given temperature, which gives the probability that an atom i has a
velocity v, in the x direction at a temperature T.
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The temperature can be calculated from the velocities using the relation
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Les vitesses initiales :
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Figure 3.4: A Maxwellian distribution, generated from random numbers.
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0.Visualisation

Figure 4. Trajectories of a single lipid from the 34mer simulation for 40 ps at 4 ps intervals (left), 400 ps at 40 ps intervals (center), and 4 ns at
400 ps intervals (right). Each trajectory starts at the beginning of the production run, and the center of mass motion of the micelle was removed
from subsequent frames. Initial coordinates for the rest of the micelle are shown in gray to provide a sense of scale. The lipid was chosen for its
mostly planar motion over the 4 ns; other lipids moved approximately the same distance but with more complex motion. In this and the remaimng
figures, water molecules are omitted For clarity:
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Figure 8.10: Analysis of the secondary structure elements of a peptide in time.



2.Statistiques
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Figure 7. Histogram of the instantaneous ratios (calculated each ps)
between the moments of inertia along the minor and major axes for

the 34mer simulation.
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Langevin Dynamics (LD) Simulation

The Langevin equation is a stochastic differential equation in which two force terms have been added to
Newton’s second law to approximate the effects of neglected degrees of freedom. One term represents a

frictional force, the other a random force & . For example, the effects of solvent molecules not explicitly
present in the syst’eTn'being simulated would be approximated in terms of a frictional drag on the solute
as well as random kicks associated with the thermal motions of the solvent molecules. Since friction
opposes motion, the first additional force is proportional to the particle’s velocity and oppositely

directed. Langevin’s equation for the motion of atom i is:

—

Fi — mith + Balt) = madls,

where ﬁi is still the sum of all forces cxerted on atom i by other atoms explicitly present in the system.

This equation is often expressed in terms of the ‘collision frequency’ { = v/m .

The friction coefficient is related to the fluctuations of the random force by the fluctuation-dissipation
theorem.:

(Ri(2)) =0,
f (B:(0) - Belt)}dt = BkpT:.

In simulations it is often assumed that the random force is completely uncorrelated at different times.
That is, the above equation takes the form:

(Bit) - Bld)) = SknTyd(i — 1) Y (E- v \) Dhcac w a X\W\J o

The temperature of the system being simulated is maintained via this relationship between }_f(t) and 7 .

The jostling of a solute by solvent can expedite barrier crossing, and hence Langevin dynamics can
search conformations better than Newtonian molecular dynamics (¥ = 0).
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Worth Worrying About:

Ultimately, simulations are judged according to two basic criteria:

I. How well do the empirical energy surface and the chosen system composition approximate
Nature?

V(R):

How realistic are the chosen functional form and the associated numerical constants?

PSF Generation:
Which titratable groups should be protonated? Without employing quantum mechanics,
protonations are assumed at the beginning and maintained throughout the simulation. Also, how
much water is needed [15]? How many ions should be included?

II. How well is the energy surface (phase space) explored?

MD Simulation:
What length of simulation is sufficient? First, the system must be equilibrated such that system
properties such as potential energy, temperature, and volume appear to have stopped drifting. Then
the simulation must continue long enough to obtain reliable equilibrium averages.

MC Simulation:
Does the chosen ‘move set’ embody all motions relevant to the question being asked of the
simulation? Have enough steps been taken?

Mistakes to Avoid:

Inconsistent V(&) :

The potential function (long-range cutoff keywords, distances, ...) should not be changed at
different stages of a simulation study. All input scripts used in a research project that evaluate
energies and forces (energy minimizations, annealings, dynamics simulations, ...) should explicitly
(Don’t trust the defaults!) do so in the same way.

Submit and Forget:
Don’t let a simulation run unmonitored. Check intermediate results daily. Plot the time
dependences of the potential and total energies, the temperature, the pressure and volume (if
applicable), and the root-mean-square deviation from a reference (crystallographic or =0)
structure.

Remember: Simulations are fiction aspiring to emulate reality. Pretty pictures and even a few good
numbers do not guarantee good science.



RX; RMN:
*Structures recontruites a partir de données expérimentales moyennées (nbre
de molécules x temps de la mesure)

* Pb : Struct(<Exp>)#<Struct(Exp)

* Réalité physique de la structure moyenne ?
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-(-Hairpin Folding Simulations in Atomistic Detail : , 167

Folding @ Home

|Series1' |Serle32i °* o @ |Serles 27i
—
[ Trial | n Trial

Figure 10. A schematic representation of the ensemble dynamics methodology. Locally, the Folding@Home servers
initiate numerous Series of simulations. Each Series is independent of all others, and consists of 100 Trial simulations
which are distributed to our thousands of users around the world. The data presented here were collected using a
total of 27 Series offering 2700 Trials which resulted in a total of 38 ps of simulated time eight fully independent, suc-
cessful folding trajectories. The Trials are coupled within a single Series as follows: when a given Trial crosses a free
energy barrier (herein defined by an energy variance of 300 kcal’/mol?) all other Trials within that Series are
restarted from that configuration, all 100 having different random number seeds (and thus different random force

components) upon each restart. If no transitions above the required energy variance are detected, the method simpli-
fies to a mass parallelization of fully independent simulations. .
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OTHER TECHNIQUES NOT SEEN HERE :
->Multicanonical simulations
- Genetic or Greedy Approaches

->Harmonic Dynamics



NEXT TIME: READING AND DISCUSSION

Atomic-Level Characterization
of the Structural Dynamics of Proteins

David E. Shaw,™** Paul Maragakis,"t Kresten Lindorff-Larsen,'t Stefano Piana,'t
Ron O. Dror,” Michael P. Eastwood,” Joseph A. Bank," John M. Jumper,® John K. Salmon,’
Yibing Shan,* Willy Wriggers®

Molecular dynamics (MD) simulations are widely used to study protein motions at an atomic
level of detail, but they have been limited to time scales shorter than those of many biologically
critical conformational changes. We examined two fundamental processes in protein
dynamics—protein folding and conformational change within the folded state—by means of
extremely long all-atom MD simulations conducted on a special-purpose machine. Equilibrium
simulations of a WW protein domain captured multiple folding and unfolding events that
consistently follow a well-defined folding pathway; separate simulations of the protein’s constituent
substructures shed light on possible determinants of this pathway. A 1-millisecond simulation

of the folded protein BPTI reveals a small number of structurally distinct conformational states
whose reversible interconversion is slower than local relaxations within those states by a factor
of more than 1000.
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