Reorientation and Allied Dynamics in Water and Aqueous Solutions

TitleReorientation and Allied Dynamics in Water and Aqueous Solutions
Publication TypeJournal Article
Year of Publication2011
AuthorsLaage D, Stirnemann G, Sterpone F, Rey R, Hynes JT
JournalAnnu. Rev. Phys. Chem.
Volume62
Pagination395–416
ISBN Number0066-426X 1545-1593
ISSN0066-426X
Abstract

The reorientation of a water molecule is important for a host of phenomena, ranging over?in an only partial listing?the key dynamic hydrogen-bond network restructuring of water itself, aqueous solution chemical reaction mechanisms and rates, ion transport in aqueous solution and membranes, protein folding, and enzymatic activity. This review focuses on water reorientation and related dynamics in pure water, and for aqueous solutes with hydrophobic, hydrophilic, and amphiphilic character, ranging from tetramethylurea to halide ions and amino acids. Attention is given to the application of theory, simulation, and experiment in the probing of these dynamics, in usefully describing them, and in assessing the description. Special emphasis is placed on a novel sudden, large-amplitude jump mechanism for water reorientation, which contrasts with the commonly assumed Debye rotational diffusion mechanism, characterized by small-amplitude angular motion. Some open questions and directions for further research are also discussed. Expected final online publication date for the Annual Review of Physical Chemistry Volume 62 is March 31, 2011. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.

URLhttp://www.annualreviews.org/doi/abs/10.1146/annurev.physchem.012809.103503$\backslash$nhttp://www.annualreviews.org.login.ezproxy.lib.purdue.edu/doi/pdf/10.1146/annurev.physchem.012809.103503
DOI10.1146/annurev.physchem.012809.103503
Citation Key2011|1383