Deforming DNA: from physics to biology

Error message

Warning: A non-numeric value encountered in theme_biblio_tabular() (line 223 of /var/www/html/sites/all/modules/biblio/includes/biblio_theme.inc).
TitleDeforming DNA: from physics to biology
Publication TypeJournal Article
Year of Publication2009
AuthorsPrévost C, Takahashi M., Lavery R
JournalChemphyschem
Volume10
Pagination1399–404
Date Publishedjul
Abstract

The DNA double helix has become a modern icon which symbolizes our understanding of the molecular basis of life. It is less widely recognized that the double helix proposed by Watson and Crick more than half a century ago is a remarkably adaptable molecule that can undergo major conformational rearrangements without being irreversibly damaged. Indeed, DNA deformation is an intrinsic feature of many of the biological processes in which it is involved. Over the last two decades, single-molecule experiments coupled with molecular modeling have transformed our understanding of DNA flexibility, while the accumulation of high-resolution structures of DNA-protein complexes have demonstrated how organisms can exploit this property as a useful feature for preserving, reading, replicating, and packaging the genetic message. In this Minireview we summarize the information now available on the extreme–and the less extreme–deformations of the double helix.

DOI10.1002/cphc.200900253
Citation Key2009|1636